337 research outputs found

    Effects of overstorey canopy, plant-plant interactions and soil properties on Mediterranean maritime pine seedling dynamics

    Get PDF
    Seedling emergence, survival and early growth of the Mediterranean conifer P. pinaster were studied under closed canopy and open canopy (gaps) cover conditions in a Mediterranean forest of central Spain during two consecutive years (March 2008 to January 2010). Our main objective was to understand how overstorey structure, shrubs and soil properties influence recruitment in this species. Natural emergence and seedling survival were significantly better under closed canopy cover than under open canopy during the two consecutive years of the study; survival increased as radiation decreased. Proximity to shrubs under closed canopy cover was associated with lower mortality rates as well as a positive and apparently transitive effect on early growth. Amelioration of microclimatic conditions is hypothesized as the primary facilitation agent of those observed. Younger seedlings established during the spring of 2008 experienced higher mortality rates than older seedlings established before 2008, and soil properties affected seedling survival significantly. Water stress during summer appeared to be the main cause of seedling mortality in both years. Our study suggests that seedlings of shade-intolerant species may require overstorey cover to establish successfully, and that positive plant-plant interactions in forest communities may be more important than expected in the milder conditions provided by overstorey canopy cover.Instituto Universitario de Gestión Forestal Sostenibl

    Dynamics and pattern of a managed coniferous forest landscape in Oregon

    Get PDF
    We examined the process of fragmentation in a managed forest landscape by comparing rates and patterns of disturbance (primarily clear-cutting) and regrowth between 1972 and 1988 using Landsat imagery. A 2589-km(exp 2) managed forest landscape in western Oregon was classified into two forest types, closed-canopy conifer forest (CF) (typically, greater than 60% conifer cover) and other forest and nonforest types (OT) (typically, less than 40 yr old or deciduous forest). The percentage of CF declined from 71 to 58% between 1972 and 1988. Declines were greatest on private land, least in wilderness, and intermediate in public nonwilderness. High elevations (greater than 914 m) maintained a greater percentage of CF than lower elevations (less than 914 m). The percentage of the area at the edge of the two cover types increased on all ownerships and in both elevational zones, whereas the amount of interior habitat (defined as CF at least 100 m from OT) decreased on all ownerships and elevational zones. By 1988 public lands contained approximately 45% interior habitat while private lands had 12% interior habitat. Mean interior patch area declined from 160 to 62 ha. The annual rate of disturbance (primarily clear-cutting) for the entire area including the wilderness was 1.19%, which corresponds to a cutting rotation of 84 yr. The forest landscape was not in a steady state or regulated condition which is not projected to occur for at least 40 yr under current forest plans. Variability in cutting rates within ownerships was higher on private land than on nonreserve public land. However, despite the use of dispersed cutting patterns on public land, spatial patterns of cutting and remnant forest patches were nonuniform across the entire public ownership. Large remaining patches (less than 5000 ha) of contiguous interior forest were restricted to public lands designated for uses other than timber production such as wilderness areas and research natural areas

    Measuring forest landscape patterns in the Cascade Range of Oregon, USA

    Get PDF
    This paper describes the use of a set of spatial statistics to quantify the landscape pattern caused by the patchwork of clearcuts made over a 15-year period in the western Cascades of Oregon. Fifteen areas were selected at random to represent a diversity of landscape fragmentation patterns. Managed forest stands (patches) were digitized and analyzed to produce both tabular and mapped information describing patch size, shape, abundance and spacing, and matrix characteristics of a given area. In addition, a GIS fragmentation index was developed which was found to be sensitive to patch abundance and to the spatial distribution of patches. Use of the GIS-derived index provides an automated method of determining the level of forest fragmentation and can be used to facilitate spatial analysis of the landscape for later coordination with field and remotely sensed data. A comparison of the spatial statistics calculated for the two years indicates an increase in forest fragmentation as characterized by an increase in mean patch abundance and a decrease in interpatch distance, amount of interior natural forest habitat, and the GIS fragmentation index. Such statistics capable of quantifying patch shape and spatial distribution may prove important in the evaluation of the changing character of interior and edge habitats for wildlife

    Science and society: The Role of Long-term Studies in Environmental Stewardship

    Get PDF
    Long-term research should play a crucial role in addressing grand challenges in environmental stewardship. We examine the efforts of five Long Term Ecological Research Network sites to enhance policy, management, and conservation decisions for forest ecosystems. In these case studies, we explore the approaches used to inform policy on atmospheric deposition, public land management, land conservation, and urban forestry, including decisionmaker engagement and integration of local knowledge, application of models to analyze the potential consequences of policy and management decisions, and adaptive management to generate new knowledge and incorporate it into decisionmaking. Efforts to enhance the role of long-term research in informing major environmental challenges would benefit from the development of metrics to evaluate impact; stronger partnerships among research sites, professional societies, decisionmakers, and journalists; and greater investment in efforts to develop, test, and expand practice-based experiments at the interface of science and society

    Softsensors: key component of property control in forming technology

    Get PDF
    The constantly increasing challenges of production technology for the economic and resource-saving production of metallic workpieces require, among other things, the optimisation of existing processes. Forming technology, which is confronted with new challenges regarding the quality of the workpieces, must also organise the individual processes more efficiently and at the same time more reliably in order to be able to guarantee good workpiece quality and at the same time to be able to produce economically. One way to meet these challenges is to carry out the forming processes in closed-loop control systems using softsensors. Despite the many potential applications of softsensors in the field of forming technology, there is still no definition of the term softsensor. This publication therefore proposes a definition of the softsensor based on the definition of a sensor and the distinction from the observer, which on the one hand is intended to stimulate scientific discourse and on the other hand is also intended to form the basis for further scientific work. Based on this definition, a wide variety of highly topical application examples of various softsensors in the field of forming technology are given
    corecore